A064159 Numbers n such that g(n) + sopfr(n) = n, where g(n)= number of nonprimes <=n (A062298) and sopfr(n) = sum of primes dividing n with repetition (A001414).
1, 24, 27, 30, 55, 65, 95, 145, 155, 185, 205, 822, 894, 2779, 2863, 8104, 64270, 174691, 174779, 1301989, 1302457, 3523478, 9554955, 9555045, 9556455, 70111213, 70111247, 514269523, 514269599, 10246934786, 10246934962, 204475046525, 554805817358, 4086199294828
Offset: 1
Keywords
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 0, a(n-1)) while add(i[1]*i[2], i=ifactors(k)[2])<>pi(k) do od; k end: seq(a(n), n=1..17); # Alois P. Heinz, Dec 18 2011
-
Mathematica
a[n_] := a[n] = Module[{k}, For[k = 1 + If[n==1, 0, a[n-1]], Sum[i[[1]] * i[[2]], {i, FactorInteger[k]}] != PrimePi[k], k++]; k]; a[1] = 1; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 25 2017, after Alois P. Heinz *)
-
PARI
sopfr(n) = my(fac=factor(n)); sum(i=1, #fac~, fac[i,1]*fac[i,2]); for (n=1,10^6, if (sopfr(n)==primepi(n), print1(n, ", "))) \\ edited by Michel Marcus, Mar 25 2017
Extensions
a(17)-a(21) from Alois P. Heinz, Dec 18 2011
a(22)-a(31) from Donovan Johnson, Jun 29 2012
a(32)-a(34) from Giovanni Resta, Mar 28 2017
Comments