cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064201 9 times octagonal numbers: a(n) = 9*n*(3*n-2).

Original entry on oeis.org

0, 9, 72, 189, 360, 585, 864, 1197, 1584, 2025, 2520, 3069, 3672, 4329, 5040, 5805, 6624, 7497, 8424, 9405, 10440, 11529, 12672, 13869, 15120, 16425, 17784, 19197, 20664, 22185, 23760, 25389, 27072, 28809, 30600, 32445, 34344, 36297, 38304, 40365, 42480, 44649
Offset: 0

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Sep 22 2001

Keywords

References

  • L. Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 341.

Crossrefs

Programs

  • Mathematica
    9*PolygonalNumber[8,Range[0,40]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,9,72},40] (* Harvey P. Dale, Aug 01 2020 *)
  • PARI
    a(n)=9*n*(3*n-2) \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = 9*(n-2)*(3*n-8), with offset 2.
a(n) = 9*A000567(n). - Omar E. Pol, Dec 11 2008
a(n) = a(n-1) + 54*n - 45, with n > 0, a(0)=0. - Vincenzo Librandi, Dec 15 2010
G.f.: 9*x*(1+5*x)/(1-x)^3. - Colin Barker, Feb 29 2012
From Elmo R. Oliveira, Dec 25 2024: (Start)
E.g.f.: 9*exp(x)*x*(1 + 3*x).
a(n) = 3*A152751(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Better definition, corrected offset and edited from Omar E. Pol, Dec 11 2008