A064205 Numbers k such that sigma(k) + tau(k) is a prime.
1, 2, 8, 128, 162, 512, 32768, 41472, 101250, 125000, 1414562, 3748322, 5120000, 6837602, 8000000, 13530402, 24234722, 35701250, 66724352, 75031250, 78125000, 86093442, 91125000, 171532242, 177058562, 226759808, 233971712, 617831552, 664301250, 686128968
Offset: 1
Keywords
Examples
128 is a term since sigma(128) + tau(128) = 255 + 8 = 263, which is prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5000 (first 34 terms from Harry J. Smith, terms 35..276 from Kevin P. Thompson)
Programs
-
Mathematica
Do[ If[ PrimeQ[ DivisorSigma[1, n] + DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
-
PARI
{ n=0; for (m=1, 10^9, if (isprime(sigma(m) + numdiv(m)), write("b064205.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 10 2009
-
Python
from itertools import count, islice from sympy import isprime, divisor_sigma as s, divisor_count as t def agen(): # generator of terms yield 1 yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)+t(k))) print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022
Extensions
More terms from Robert G. Wilson v, Nov 12 2001
More terms from Labos Elemer, Nov 22 2001
More terms from Jud McCranie, Nov 29 2001
a(28) from Harry J. Smith, Sep 10 2009
Comments