cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064222 a(0) = 0; a(n) = DecimalDigitsSortedDecreasing(a(n-1) + 1) for n > 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 32, 33, 43, 44, 54, 55, 65, 66, 76, 77, 87, 88, 98, 99, 100, 110, 111, 211, 221, 222, 322, 332, 333, 433, 443, 444, 544, 554, 555, 655, 665, 666, 766, 776, 777, 877, 887, 888, 988, 998, 999, 1000, 1100, 1110, 1111, 2111
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 21 2001

Keywords

Comments

a(n) = A004186(a(n-1) + 1). - Reinhard Zumkeller, Oct 31 2007

Crossrefs

Programs

  • Haskell
    a064222 n = a064222_list !! n
    a064222_list = iterate (a004186 . (+ 1)) 0
    -- Reinhard Zumkeller, Apr 11 2012
  • Mathematica
    NestList[FromDigits[Sort[IntegerDigits[#+1],Greater]]&,0,60] (* Harvey P. Dale, Sep 04 2011 *)

Formula

a(n+1) = (d+0^d)*10^floor(log_10(a(n)+1)) + (1-0^d)*floor(a(n)/10), where d = (a(n)+1) mod 10. - Reinhard Zumkeller, Oct 31 2007
a(n) = (ceiling( (n-G(D(n)-1))/D(n) )*(10^D(n) -1) - 10^( (G(D(n)-1)-n) mod (D(n)) ) + 1)/9, for n>0, where D(n) = floor( (sqrt(8n+1)+3)/6 ) is the number of digits in a(n), and G(k) = A027468(k) = 9*k*(k+1)/2. - Stefan Alexandru Avram, May 24 2023