A064224 Numbers having more than one representation as the product of consecutive integers > 1.
120, 210, 720, 5040, 175560, 17297280, 19958400, 259459200, 20274183401472000, 25852016738884976640000, 368406749739154248105984000000
Offset: 1
Examples
120 is here because 120 = 2*3*4*5 = 4*5*6. a(2)=210 because we can write 210=5*6*7 or 14*15. The term a(8) = 259459200 = 5*6*7*8*9*10*11*12*13 = 8*9*10*11*12*13*14*15 is related to 210 by adding the intervening integers (8 through 13) to both products.
Links
- H. L. Abbott, P. Erdos and D. Hanson, On the numbers of times an integer occurs as a binomial coefficient, Amer. Math. Monthly, (March 1974), 256-261.
- R. A. MacLeod and I. Barrodale, On equal products of consecutive integers, Canad. Math. Bull., 13 (1970) 255-259. [_T. D. Noe_, Jul 29 2009]
- Robert Munafo, Page dealing with this sequence
Crossrefs
Programs
-
Mathematica
nn=10^10; t3={}; Do[m=0; p=n; While[m++; p=p(n+m); p<=nn, t3={t3, p}], {n, 2, Sqrt[nn]}]; t3=Sort[Flatten[t3]]; lst={}; Do[If[t3[[i]]==t3[[i+1]], AppendTo[lst, t3[[i]]]], {i, Length[t3]-1}]; Union[lst]
-
Python
import heapq def aupton(terms, verbose=False): p = 2*3; h = [(p, 2, 3)]; nextcount = 4; alst = []; oldv = None while len(alst) < terms: (v, s, l) = heapq.heappop(h) if v == oldv and v not in alst: alst.append(v) if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i = Prod_{{i = {olds}..{oldl}}} i]") if v >= p: p *= nextcount heapq.heappush(h, (p, 2, nextcount)) nextcount += 1 oldv, olds, oldl = v, s, l v //= s; s += 1; l += 1; v *= l heapq.heappush(h, (v, s, l)) return alst print(aupton(8, verbose=True)) # Michael S. Branicky, Jun 24 2021
Extensions
a(1), a(7) and a(8) from T. D. Noe, Nov 22 2004
a(9) and a(10) from Robert Munafo, Aug 13 2007
a(11) from Robert Munafo, Aug 17 2007
Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar
Comments