cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064306 Convolution of A052701 (Catalan numbers multiplied by powers of 2) with powers of -1.

Original entry on oeis.org

1, 1, 7, 33, 191, 1153, 7295, 47617, 318463, 2170881, 15028223, 105365505, 746651647, 5339185153, 38478839807, 279201841153, 2037998419967, 14954803494913, 110255315877887, 816299567480833, 6066679566041087
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8*x])/(4*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 09 2013 *)
    Table[FullSimplify[2^(n+1)*(2*n+2)! * Hypergeometric2F1Regularized[1, n+3/2, n+3, -8]/(n+1)! + (-1)^n/2],{n,0,20}] (* Vaclav Kotesovec, Dec 09 2013 *)
    Table[(-1)^n*Sum[(-2)^k * CatalanNumber[k], {k,0,n}], {n,0,50}] (* G. C. Greubel, Jan 27 2017 *)
  • PARI
    for(n=0, 25, print1((-1)^n*sum(k=0,n, (-2)^k*binomial(2*k,k)/(k+1)), ", ")) \\ G. C. Greubel, Jan 27 2017
  • Sage
    def A064306():
        f, c, n = 1, 1, 1
        while True:
            yield f
            n += 1
            c = c * (8*n - 12) // n
            f = c - f
    a = A064306()
    print([next(a) for  in range(21)]) # _Peter Luschny, Nov 30 2016
    

Formula

a(n) = (-1)^n*Sum_{k=0,..,n} (C(k)/(-1/2)^k) with C(k)=A000108(k) (Catalan).
a(n) = -a(n-1) + C(n)*2^n, n >= 0, a(-1) := 0, with C(n)=A000108(n).
G.f.: A(2*x)/(1+x), with A(x) g.f. of Catalan numbers A000108.
Recurrence: (n+1)*a(n) = (7*n-5)*a(n-1) + 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Dec 09 2013
a(n) ~ 2^(3*n+3)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 09 2013