cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064315 Triangle of number of permutations by length of shortest ascending run.

Original entry on oeis.org

1, 1, 1, 5, 0, 1, 18, 5, 0, 1, 101, 18, 0, 0, 1, 611, 89, 19, 0, 0, 1, 4452, 519, 68, 0, 0, 0, 1, 36287, 3853, 110, 69, 0, 0, 0, 1, 333395, 27555, 1679, 250, 0, 0, 0, 0, 1, 3382758, 233431, 11941, 418, 251, 0, 0, 0, 0, 1, 37688597, 2167152, 59470, 658, 922, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

David W. Wilson, Sep 07 2001

Keywords

Examples

			Sequence (1, 3, 2, 5, 4) has ascending runs (1, 3), (2, 5), (4), the shortest is length 1. Of all permutations of (1, 2, 3, 4, 5), T(5,1) = 101 have shortest ascending run of length 1.
Triangle T(n,k) begins:
      1;
      1,    1;
      5,    0,   1;
     18,    5,   0,  1;
    101,   18,   0,  0,  1;
    611,   89,  19,  0,  0, 1;
   4452,  519,  68,  0,  0, 0, 1,
  36287, 3853, 110, 69,  0, 0, 0, 1;
  ...
		

Crossrefs

Row sums give: A000142.

Programs

  • Maple
    A:= proc(n, k) option remember; local b; b:=
          proc(u, o, t) option remember; `if`(t+o<=k, (u+o)!,
            add(b(u+i-1, o-i, min(k, t)+1), i=1..o)+
            `if`(t<=k, u*(u+o-1)!, add(b(u-i, o+i-1, 1), i=1..u)))
          end: forget(b):
          add(b(j-1, n-j, 1), j=1..n)
        end:
    T:= (n, k)-> A(n, k) -A(n, k-1):
    seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 29 2013
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{b}, b[u_, o_, t_] := b[u, o, t] = If[t+o <= k, (u+o)!, Sum[b[u+i-1, o-i, Min[k, t]+1], {i, 1, o}] + If[t <= k, u*(u+o-1)!, Sum[ b[u-i, o+i-1, 1], {i, 1, u}]]]; Sum[b[j-1, n-j, 1], {j, 1, n}]]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

Formula

T(2*n,n) = binomial(2*n,n)-1 = A030662(n).
Sum_{k=1..n} k * T(n,k) = A064316(n).