cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064322 Triply triangular numbers.

Original entry on oeis.org

0, 1, 21, 231, 1540, 7260, 26796, 82621, 222111, 536130, 1186570, 2445366, 4747821, 8763391, 15487395, 26357430, 43398586, 69401871, 108140571, 164629585, 245433090, 359026206, 516216646, 730632651, 1019283825, 1403201800, 1908167976, 2565535896, 3413156131
Offset: 0

Views

Author

Henry Bottomley, Oct 15 2001

Keywords

Examples

			a(4) = 1540 because 4th triangular number is 10, 10th triangular number is 55 and 55th triangular number is 1540.
		

Crossrefs

Programs

  • Maple
    a:= n-> ((k-> binomial(k+1,2))@@3)(n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 19 2012
  • Mathematica
    f[n_] := n(n + 1)/2; Table[ Nest[f, n, 3], {n, 0, 25}] (* Robert G. Wilson v, Jun 30 2004 *)
  • PARI
    a(n) = { my(Tri(m)= m*(m + 1)/2); Tri(Tri(Tri(n))) } \\ Harry J. Smith, Sep 11 2009

Formula

a(n) = A000217(A000217(A000217(n))) = n*(n+1)*(n^2 + n + 2)*(n^4 + 2n^3 + 3n^2 + 2n + 8)/128 = A002817(n)*(A002817(n) + 1)/2.
G.f.: x*(1 + 12*x + 78*x^2 + 133*x^3 + 78*x^4 + 12*x^5 + x^6)/(1 - x)^9. - Colin Barker, Apr 19 2012