A064326 Generalized Catalan numbers C(-4; n).
1, 1, -3, 25, -251, 2817, -33843, 425769, -5537835, 73865617, -1004862179, 13888533561, -194475377243, 2752994728225, -39333541106835, 566464908534345, -8214515461250955, 119845125957958065, -1757855400878129475, 25906894146115000665, -383443906519878272955
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..830
Crossrefs
Cf. A064334.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (9 +Sqrt(1+16*x))/(2*(5-x)) )); // G. C. Greubel, May 03 2019 -
Mathematica
CoefficientList[Series[(9 +Sqrt[1+16*x])/(2*(5-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
-
PARI
my(x='x+O('x^30)); Vec((9 +sqrt(1+16*x))/(2*(5-x))) \\ G. C. Greubel, May 03 2019
-
Sage
def a(n): if n==0: return 1 return hypergeometric([1-n, n], [-n], -4).simplify() [a(n) for n in range(20)] # Peter Luschny, Nov 30 2014
-
Sage
((9 +sqrt(1+16*x))/(2*(5-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
Formula
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-4)^m/n.
a(n) = (1/5)^n*(1 + 4*Sum_{k=0..n-1} C(k)*(-4*5)^k), n >= 1, a(0) = 1; with C(n) = A000108(n) (Catalan).
G.f.: (1+4*x*c(-4*x)/5)/(1-x/5) = 1/(1-x*c(-4*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = hypergeometric([1-n, n], [-n], -4) for n > 0. - Peter Luschny, Nov 30 2014
Comments