A064370 Zero, together with positive numbers k such that prime(k) - k is a square.
0, 1, 2, 12, 100, 118, 152, 190, 212, 258, 352, 462, 690, 741, 1285, 1396, 1417, 2119, 2318, 2603, 3370, 3777, 4073, 4155, 4485, 4522, 4600, 4719, 5317, 5446, 6697, 6748, 6985, 7144, 7595, 9492, 9551, 12010, 12985, 13438, 13850, 14672, 14739, 16510
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..7110 (first 300 terms from Harry J. Smith, terms 301..1000 from Zak Seidov)
Programs
-
Mathematica
Join[{0}, Select[Range[50000], IntegerQ[Sqrt[Prime[#] - #]] &]] (* Paolo Xausa, Apr 16 2024 *)
-
PARI
j=[]; for(n=0,20000, if(n==0 || issquare(prime(n)-n), j=concat(j,n))); j
-
PARI
{ n=0; default(primelimit, 20000000); for (m=0, 10^9, if (m==0 || issquare(prime(m) - m), write("b064370.txt", n++, " ", m); if (n==300, break)) ) } \\ Harry J. Smith, Sep 13 2009
-
PARI
upto(n) = { my(t = 0, res = List(0)); forprime(p = 2, oo, t++; if(t > n, return(res)); if(issquare(p-t), listput(res, t) ); ); } \\ David A. Corneth, Apr 16 2024
Extensions
Edited by Harry J. Smith and N. J. A. Sloane, Sep 13 2009