A064430 Product of the sizes of the conjugacy classes of the symmetric group S_n.
1, 1, 6, 864, 43200000, 272097792000000000, 3416681839784939886182400000000000, 1847600699255039694224318542233446367734016245760000000000000000
Offset: 1
Keywords
Examples
a(3) = 6 because the sizes of the conjugacy classes in S_3 are 1,2,3 and the product is 6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..13
Programs
-
Magma
[ &*[ c[2] : c in ClassesData(Sym(n))] : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1$2], ((f, g)-> [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i)))) end: a:= n-> n!^combinat[numbpart](n)/b(n$2)[2]^2: seq(a(n), n=1..9); # Alois P. Heinz, Aug 03 2021
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1, 1}, Function[{f, g}, {f[[1]] + g[[1]], f[[2]]*g[[2]]*i^g[[1]]}][If[i < 2, {0, 1}, b[n, i-1]], If[i > n, {0, 1}, b[n-i, i]]]]; A007870[n_] := b[n, n][[2]]; a[n_] := (n!)^PartitionsP[n]/A007870[n]^2; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Apr 25 2022, after Alois P. Heinz *)
Extensions
More terms from Vladeta Jovovic, Oct 04 2001