cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064437 a(1)=1, a(n) = a(n-1) + 3 if n is already in the sequence, a(n) = a(n-1) + 2 otherwise.

Original entry on oeis.org

1, 3, 6, 8, 10, 13, 15, 18, 20, 23, 25, 27, 30, 32, 35, 37, 39, 42, 44, 47, 49, 51, 54, 56, 59, 61, 64, 66, 68, 71, 73, 76, 78, 80, 83, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 109, 112, 114, 117, 119, 122, 124, 126, 129, 131, 134, 136, 138, 141, 143, 146, 148, 150
Offset: 1

Views

Author

Benoit Cloitre, Feb 14 2003

Keywords

Comments

More generally let (x,y,z) be 3 positive integers and a(n) be the sequence a(1)=x, a(n) = a(n-1) + y if n is already in the sequence, a(n) = a(n-1) + z otherwise. Then it seems that a(n) is asymptotic to r*n where r is the largest positive root of q^2 = z*q + z - y.
Example: (x,y,z) = (2, 1, 2) gives A004956(n), (x,y,z) = (1, 2, 3) gives A007066(n). The present sequence is the case (1, 3, 2).
In the Fokkink-Joshi paper, this sequence is the Cloitre (0,1,3,2)-hiccup sequence. - Michael De Vlieger, Jul 30 2025

Examples

			a(6)=13 hence a(13) = a(12) + 3 = 27 + 3 = 30.
		

Crossrefs

Cf. A004956, A007066, A026351, A079000. Apart from start, equals A080652 + 1.

Programs

  • Haskell
    a064437 n = a064437_list !! (n-1)
    a064437_list = 1 : f 2 [1] where
       f x zs@(z:_) = y : f (x + 1) (y : zs) where
         y = if x `elem` zs then z + 3 else z + 2
    -- Reinhard Zumkeller, Sep 26 2014
  • Maple
    A064437:= n -> ceil((1+sqrt(2))*(n-1)+1/(2+sqrt(2))):
    seq(A064437(n),n=1..100); # Robert Israel, May 19 2014
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n-1] + If[MemberQ[Array[a, n-1], n], 3, 2];
    Array[a, 100] (* Jean-François Alcover, Aug 01 2018 *)
  • PARI
    an=vector(100); an[1]=1; a(n)=if(n<0,0,an[n]);
    x=1; y=3; z=2; an[1]=x; for(n=2,100,an[n]=if(setsearch(Set(vector(n- 1,i,a(i))),n),a(n-1)+y,a(n-1)+z));
    an
    

Formula

a(n) = ceiling((1+sqrt(2))*(n-1)+C) where C = 1/(2+sqrt(2)) = 0.292893218813...