cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064444 Numbers k such that pi(k) = sopf(k) where sopf(k) is sum of distinct prime factors of k (A008472).

Original entry on oeis.org

1, 4, 12, 28, 30, 52, 55, 65, 68, 76, 95, 145, 155, 185, 205, 822, 894, 2779, 2863, 8392, 23481, 24093, 24237, 64270, 174691, 174779, 1301989, 1302457, 3523478, 9554955, 9555045, 9556455, 70111213, 70111247, 189960426, 514269523, 514269599, 10246934786
Offset: 1

Views

Author

Jason Earls, Oct 02 2001

Keywords

Comments

No further terms < 800000. - Klaus Brockhaus, Oct 05 2001

Crossrefs

Programs

  • Mathematica
    sopf[n_] := If[n==1, 0, Total[First /@ FactorInteger[n]]]; Select[Range[10^4], PrimePi@ # == sopf@ # &] (* Giovanni Resta, Mar 28 2017 *)
  • PARI
    pi(x, c=0) = forprime(p=2,x,c++); c sopf(n, fac) = fac=factor(n); sum(i=1,matsize(fac)[1],fac[i,1]) j=[]; for(n=1,25000, if(pi(n)==sopf(n),j=concat(j,n))); j
    
  • PARI
    sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) } { n=0; for (m=1, 10^9, if (primepi(m)==sopf(m), write("b064444.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 14 2009

Extensions

More terms from Klaus Brockhaus, Oct 05 2001
a(27)-a(29) from Harry J. Smith, Sep 14 2009
a(30)-a(38) from Giovanni Resta, Mar 28 2017