A064467 Primes in Pi: a(n) = first position in decimal expansion of Pi that matches the n-th prime, or 0 if there is no such position.
7, 1, 5, 14, 95, 111, 96, 38, 17, 187, 1, 47, 3, 24, 120, 9, 5, 220, 99, 40, 300, 14, 27, 12, 13, 853, 3487, 1488, 207, 363, 298, 1097, 860, 526, 2607, 394, 1658, 1411, 1183, 429, 439, 729, 1945, 169, 38, 705, 94, 136, 485, 186, 230, 1689, 1708, 1714, 1007, 614
Offset: 1
Examples
A000040(4) = 7 = A000796(14) and A000796(i) <> 7 for i < 14, so a(4) = 14.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
pi = ToString[ N[ Pi, 4000]]; pi = StringDrop[pi, {2}]; Table[ StringPosition[pi, ToString[ Prime[ n]], 1][[1, 1]], {n, 60}] With[{pidg=RealDigits[Pi,10,5000][[1]]},Table[SequencePosition[ pidg, IntegerDigits[ n]][[1,1]],{n,Prime[ Range[ 60]]}]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Jun 01 2015 *)