cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064483 Numbers k such that k^2 + prime(k) and k^2 - prime(k) are both primes.

Original entry on oeis.org

12, 30, 60, 96, 336, 660, 702, 756, 984, 990, 1188, 1302, 1488, 1830, 1866, 2070, 2142, 2340, 2586, 2874, 2910, 3618, 3714, 3750, 3774, 3906, 4008, 4470, 4512, 4902, 5094, 5754, 6012, 6174, 6432, 6840, 6846, 6930, 7446, 7578, 7734, 8064, 8190, 8328
Offset: 1

Views

Author

Robert G. Wilson v and Jason Earls, Oct 05 2001

Keywords

Comments

All terms are multiples of 6. - Jon E. Schoenfield, Apr 13 2024

Examples

			12 is in the sequence because 144 +/- 37 = 181 and 107 which are both primes.
k=30 is a term: 30^2 = 900, prime(30) = 113, 900+113 = 1013 and 900-113 = 787, both primes.
		

Crossrefs

Intersection of A064711 and A064712. - Zak Seidov, Oct 12 2014

Programs

  • Mathematica
    Select[ Range[10^4], PrimeQ[ #^2 + Prime[ # ]] && PrimeQ[ #^2 - Prime[ # ]] &]
  • PARI
    for(n=1,20000, if(isprime(n^2+prime(n)) && isprime(n^2-prime(n)), print1(n," ")))
    
  • PARI
    { n=0; default(primelimit, 6100000); for (m=1, 10^9, if (isprime(m^2 + prime(m)) && isprime(m^2 - prime(m)), write("b064483.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 16 2009