cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064510 Numbers m such that the sum of the first k divisors of m is equal to m for some k.

Original entry on oeis.org

1, 6, 24, 28, 496, 2016, 8128, 8190, 42336, 45864, 392448, 714240, 1571328, 33550336, 61900800, 91963648, 211891200, 1931236608, 2013143040, 4428914688, 8589869056, 10200236032, 137438691328, 214204956672
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 06 2001

Keywords

Comments

Obviously all perfect numbers are included in this sequence.
a(25) > 5*10^11. Other than perfect numbers, 104828758917120, 916858574438400, 967609154764800, 93076753068441600, 215131015678525440 and 1371332329173024768 are also terms. - Donovan Johnson, Dec 26 2012
a(25) > 10^12. - Giovanni Resta, Apr 15 2017

Examples

			Divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. 1+2+3+4+6+8 = 24.
		

Crossrefs

Programs

  • Mathematica
    subtract = If[ #1 < #2, Throw[ #1], #1 - #2]&; f[n_] := Catch @ Fold[subtract, n, Divisors @ n]; lst = {}; Do[ If[ f[n] == 0, AppendTo[lst, n]], {n, 10^8}]; lst (* Bobby R. Treat and Robert G. Wilson v, Jul 14 2005 *)
    Select[Range[2000000],MemberQ[Accumulate[Divisors[#]],#]&] (* Harvey P. Dale, Mar 22 2012 *)
  • PARI
    isok(n) = {my(d = divisors(n)); my(k = 1); while ((k <= #d) && ((sd = sum(j=1, k, d[j])) != n), k++;); (sd == n);} \\ Michel Marcus, Jan 16 2014

Extensions

More terms from Don Reble, Dec 17 2001
a(19)-a(23) from Donovan Johnson, Aug 31 2008
a(24) from Donovan Johnson, Aug 11 2011