cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064571 Binomial transform of (3n)!.

Original entry on oeis.org

1, 7, 733, 365059, 480457465, 1310073012031, 6410226944228437, 51135786265589035963, 620857308610340190325489, 10894455325845833715898309495, 265361776433005578042408841530061, 8686235999260031219427964764144394867, 372097544110411566152076374938114937481193
Offset: 0

Views

Author

Karol A. Penson, Sep 20 2001

Keywords

Comments

From Peter Bala, Mar 20 2022: (Start)
The congruence a(n+k) == a(n) (mod k) holds for all n and k.
It follows that the sequence obtained by taking a(n) modulo a fixed positive integer k is periodic with exact period dividing k. For example, taken modulo 5 the sequence becomes [2, 3, 4, 0, 1, 2, 3, 4, 0, 1, ...], a purely periodic sequence with period 5.
More generally, the same property holds for any sequence with an e.g.f. of the form F(x)*exp(x*G(x)), where F(x) and G(x) are power series with integer coefficients and G(0) = 1 (see Bala, Theorem 1). (End)

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] * (3*k)!, {k, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Oct 30 2017 *)
  • PARI
    for(n=0,12,print1(round(intnum(x=0,999,exp(-x)*(1+x^3)^n)),", ")) - Gerald McGarvey, Oct 12 2007

Formula

In Maple notation: a(n) = hypergeom([1, 1/3, 2/3, -n], [], -27), n = 0, 1, ....
a(n) = Integral_{x = 0..infinity} (1+x^3)^n*exp(-x) dx. - Gerald McGarvey, Oct 12 2007
From Vaclav Kotesovec, Oct 30 2017: (Start)
a(n) = (27*n^3 - 27*n^2 + 6*n + 1)*a(n-1) - 3*(n-1)*(27*n^2 - 45*n + 20)*a(n-2) + 27*(n-2)*(n-1)*(3*n - 4)*a(n-3) - 27*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ sqrt(2*Pi) * (3*n)^(3*n + 1/2) / exp(3*n). (End)
From Peter Bala, Mar 20 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)*(3*k)!.
a(n) = 1 + 6*n*(1 + 60*(n-1)*(1 + 168*(n-2)*(1 + 330*(n-3)*(1 + 546*(n-4)*(1 + ...*(1 + (3*(3*m+1)*(3*m+2))*(n-m)*(1 + ...))))))).
a(n) == 1 (mod 6).
O.g.f: Sum_{k >= 0} (3*k)!*x^k/(1 - x)^(k+1).
E.g.f.: exp(x)*Sum_{k >= 0} (3*k)!/k!*x^k. (End)

Extensions

Corrected and extended by N. J. A. Sloane, Oct 29 2006