A064572 Number of ways to partition n into parts which are all powers of some integer k.
0, 1, 2, 5, 6, 10, 11, 17, 20, 26, 27, 38, 39, 47, 51, 65, 66, 82, 83, 102, 107, 123, 124, 153, 156, 178, 185, 216, 217, 254, 255, 297, 304, 342, 346, 408, 409, 457, 466, 535, 536, 609, 610, 690, 704, 780, 781, 895, 898, 998, 1009, 1130, 1131, 1263, 1268, 1418
Offset: 1
Examples
a(4)=5: 4^1, 3^1+3^0, 2^2, 2*2^1, 2^1+2*2^0.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000 (terms 1..220 from Shujing Lyu)
Programs
-
PARI
first(n)={Vec(sum(k=2, n, 1/prod(r=0, logint(n,k), 1-x^(k^r) + O(x*x^n)) - 1/(1-x), 0), -n)} \\ Andrew Howroyd, Dec 29 2017
Formula
G.f.: Sum_{k>=2} 1/(Product_{r>=0} 1-x^(k^r)) - 1/(1-x). - Andrew Howroyd, Dec 29 2017
Comments