cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064602 Partial sums of A001157: Sum_{j=1..n} sigma_2(j).

Original entry on oeis.org

1, 6, 16, 37, 63, 113, 163, 248, 339, 469, 591, 801, 971, 1221, 1481, 1822, 2112, 2567, 2929, 3475, 3975, 4585, 5115, 5965, 6616, 7466, 8286, 9336, 10178, 11478, 12440, 13805, 15025, 16475, 17775, 19686, 21056, 22866, 24566, 26776, 28458, 30958
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

In general, for m >= 0 and j >= 0, Sum_{k=1..n} k^m * sigma_j(k) = Sum_{k=1..s} (k^m * F_{m+j}(floor(n/k)) + k^(m+j) * F_m(floor(n/k))) - F_{m+j}(s) * F_m(s), where s = floor(sqrt(n)) and F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1). - Daniel Suteu, Nov 27 2020

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[DivisorSigma[2, #] &, 42] (* Michael De Vlieger, Jan 02 2017 *)
  • PARI
    a(n) = sum(j=1, n, sigma(j, 2)); \\ Michel Marcus, Dec 15 2013
    
  • PARI
    f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
    a(n) = my(s=sqrtint(n)); sum(k=1, s, f(n\k) + k^2*(n\k)) - s*f(s); \\ Daniel Suteu, Nov 26 2020
    
  • Python
    from math import isqrt
    def f(n): return n*(n+1)*(2*n+1)//6
    def a(n):
        s = isqrt(n)
        return sum(f(n//k) + k*k*(n//k) for k in range(1, s+1)) - s*f(s)
    print([a(k) for k in range(1, 43)]) # Michael S. Branicky, Oct 01 2022 after Daniel Suteu

Formula

a(n) = a(n-1) + A001157(n) = Sum_{j=1..n} sigma_2(j) where sigma_2(j) = A001157(j).
a(n) = Sum_{i=1..n} i^2 * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
G.f.: (1/(1 - x))*Sum_{k>=1} k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 02 2017
a(n) ~ zeta(3) * n^3 / 3. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..s} (A000330(floor(n/k)) + k^2*floor(n/k)) - s*A000330(s), where s = floor(sqrt(n)). - Daniel Suteu, Nov 26 2020