cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064609 Partial sums of A034448: sum of unitary divisors from 1 to n.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 48, 58, 76, 88, 108, 122, 146, 170, 187, 205, 235, 255, 285, 317, 353, 377, 413, 439, 481, 509, 549, 579, 651, 683, 716, 764, 818, 866, 916, 954, 1014, 1070, 1124, 1166, 1262, 1306, 1366, 1426, 1498, 1546, 1614, 1664, 1742, 1814, 1884
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate@ Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 52}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { a=0; for (n=1, 1000, a+=usigma(n); write("b064609.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 20 2009
    
  • Python
    from sympy.ntheory.factor_ import udivisor_sigma
    def a(n): return sum(udivisor_sigma(j,1) for j in range(1,n + 1))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = a(n-1) + A034448(n) = Sum_{j=1..n} usigma(j) where usigma(j) = A034448(j).
a(n) ~ Pi^2 * n^2 / (12*Zeta(3)). - Vaclav Kotesovec, Jan 11 2019