cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064630 Number of parts if 4^n is partitioned into parts of size 3^n as far as possible into parts of size 2^n as far as possible and into parts of size 1^n.

Original entry on oeis.org

2, 5, 5, 16, 25, 15, 66, 121, 146, 771, 1220, 3641, 8093, 15843, 28359, 50236, 33366, 36709, 145250, 137776, 548024, 2186496, 1066102, 4251976, 16984368, 28678103, 13620614, 205950171, 100716646, 381399635, 1397934923, 3826001641
Offset: 1

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

Corresponds to the only solution of the Diophantine equation 4^n = x*3^n + y*2^n + z*1^n with constraints 0 <= y < 3^n/2^n, 0 <= z < 2^n.
Binary order (cf. A029837) of a(n) is close to n.

Examples

			4^6 = 4096 = 729 + 729 + 729 + 729 + 729 + 64 + 64 + 64 + 64 + 64 + 64 + 64 + 1 + 1 + 1 = 5*3^6 + 7*2^6 + 3*1^6, so a(6) = 5 + 7 + 3 = 15.
		

Crossrefs

Programs

  • PARI
    {for(n=1,32,a=divrem(4^n,3^n); b=divrem(a[2],2^n); print1(a[1]+b[1]+b[2],","))}
    
  • PARI
    { f=t=w=1; for (n=1, 250, f*=4; t*=3; w*=2; a=divrem(f, t); b=divrem(a[2], w); write("b064630.txt", n, " ", a[1]+b[1]+b[2]) ) } \\ Harry J. Smith, Sep 20 2009

Formula

a(n) = A064628(n) + floor(A064629(n)/2^n) + (A064629(n) mod 2^n) = floor(4^n/3^n) + floor((4^n mod 3^n)/2^n) + ((4^n mod 3^n) mod 2^n)

Extensions

Edited by Klaus Brockhaus, May 24 2003