A064632 Smallest prime p such that n = (p-1)/(q-1) for some prime q.
3, 7, 5, 11, 7, 29, 17, 19, 11, 23, 13, 53, 29, 31, 17, 103, 19, 191, 41, 43, 23, 47, 97, 101, 53, 109, 29, 59, 31, 311, 193, 67, 137, 71, 37, 149, 229, 79, 41, 83, 43, 173, 89, 181, 47, 283, 97, 197, 101, 103, 53, 107, 109, 331, 113, 229, 59, 709, 61, 367, 373
Offset: 2
Examples
a(7) = 29 because (29-1)/(5-1).
Links
- Daria Micovic, Table of n, a(n) for n = 2..10000
- Matthew M. Conroy, A sequence related to a conjecture of Schinzel, , J. Integ. Seqs. Vol. 4 (2001), #01.1.7.
Programs
-
Mathematica
NextPrim[n_] := (k = n + 1; While[ !PrimeQ[k], k++ ]; k); Do[p = 2; While[q = (p - 1)/n + 1; !PrimeQ[q] || q >= p, p = NextPrim[p]]; Print[p], {n, 2, 100} ] spp[n_]:=Module[{p=2},While[!PrimeQ[(p-1)/n+1],p=NextPrime[p]];p]; Array[ spp,70,2] (* Harvey P. Dale, Aug 22 2019 *)
-
PARI
a(n) = {forprime(p=2, , forprime(q=2, p-1, if ((p-1)/(q-1) == n, return (p));););} \\ Michel Marcus, Apr 16 2016
-
Sage
def A064632(n): p, q = 0, 0 while not (q.is_prime() and q < p): p = next_prime(p) if p % n != 1: continue q = (p - 1) // n + 1 return p # Daria Micovic, Apr 13 2016
Extensions
Definition corrected by Stephanie Anderson, Apr 16 2016