cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354299 a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 3, 15, 105, 189, 10395, 135135, 2027025, 34459425, 130945815, 13749310575, 316234143225, 7905853580625, 12556355686875, 1238056670725875, 776918153694375, 6332659870762850625, 7642865361265509375, 8200794532637891559375, 63966197354575554163125, 13113070457687988603440625
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, denom(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Denominator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Denominator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Denominator

Formula

Denominators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).

A064646 Numerators of partial sums of reciprocals of primorial numbers.

Original entry on oeis.org

1, 2, 7, 74, 543, 10589, 120009, 3420257, 4767631, 2281311434, 141441308909, 51307141467, 3301022547923, 200573000466191, 433638827007904943, 328326540448842314, 31534618884970203647, 13785884222546140694347
Offset: 1

Views

Author

Labos Elemer, Oct 04 2001

Keywords

Examples

			For n = 5, Sum_{j=1..5} 1/A002110(j) = 1/2 + 1/6 + 1/30 + 1/210 + 1/2310 = (1155 + 385 + 77 + 11 + 1)/2310 = 1629/2310 = 543/770, so a(5) = 543.
		

Crossrefs

Cf. A002110, A064647 (denominators), A064648.

Programs

  • Mathematica
    q[x_] := Apply[Times, Table[Prime[j], {j, 1, x}]]; a[n_] := Numerator[Apply[Plus, Table[1/q[w], {w, 1, n}]]]; Array[a, 18]
  • PARI
    list(lim) = {my(s = 0, pr = 1); forprime(p = 1, lim, pr *= p; s += 1/pr; print1(numerator(s), ", "));} \\ Amiram Eldar, Feb 08 2025

Formula

Limit_{n->oo} a(n)/A064647(n) = A064648. - Amiram Eldar, Feb 08 2025
Showing 1-2 of 2 results.