cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354298 a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 2, 11, 76, 137, 7534, 97943, 1469144, 24975449, 94906706, 9965204131, 229199695012, 5729992375301, 9100576125478, 897316805972131, 563093542209232, 4589775462547450033, 5539384178936577626, 5943759223998947792699, 46361321947191792783052, 9504070999174317520525661
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, numer(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Numerator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Numerator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Numerator

Formula

Numerators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).

A064647 Denominators of partial sums of reciprocals of primorial numbers.

Original entry on oeis.org

2, 3, 10, 105, 770, 15015, 170170, 4849845, 6760390, 3234846615, 200560490130, 72752334655, 4680773285034, 284407855036305, 614889782588491410, 465559406817000639, 44715356980330526490, 19548063559901161830545
Offset: 1

Views

Author

Labos Elemer, Oct 04 2001

Keywords

Examples

			For n = 5, Sum_{j=1..5} 1/A002110(j) = 1/2 + 1/6 + 1/30 + 1/210 + 1/2310 = (1155 + 385 + 77 + 11 + 1)/2310 = 1629/2310 = 543/770, so a(5) = 770.
		

Crossrefs

Cf. A002110, A064646 (numerators).

Programs

  • Mathematica
    q[x_] := Apply[Times, Table[Prime[j], {j, 1, x}]]; a[n_] := Denominator[Apply[Plus, Table[1/q[w], {w, 1, n}]]]; Array[a, 18]
  • PARI
    list(lim) = {my(s = 0, pr = 1); forprime(p = 1, lim, pr *= p; s += 1/pr; print1(denominator(s), ", "));} \\ Amiram Eldar, Feb 08 2025

A064488 A Beatty sequence: Floor[n*c], where c = A064648 is the sum of the reciprocals of primorials.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 28, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 38, 39, 40, 40, 41, 42, 43, 43, 44, 45, 45, 46, 47, 47, 48, 49, 50, 50, 51, 52
Offset: 1

Views

Author

Labos Elemer, Oct 04 2001

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=80},Floor[Times@@#]&/@Thread[{Range[nn],Accumulate[1/Rest[ FoldList[Times,1,Prime[Range[nn]]]]]}]] (* Harvey P. Dale, Apr 13 2014 *)
Showing 1-3 of 3 results.