cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064675 Numbers k such that sopfr(k) = sopf(k+1), where sopf(k) = A008472(k) and sopfr(k) = A001414(k).

Original entry on oeis.org

5, 27, 77, 714, 836, 948, 1449, 4185, 4624, 5405, 5560, 8476, 8855, 10175, 16932, 17080, 18655, 20450, 20600, 21183, 26642, 28809, 31524, 35631, 37828, 37881, 40081, 47544, 48203, 49240, 52155, 52554, 53192, 63344, 63426, 63665, 79118, 80800, 81576, 83780
Offset: 1

Views

Author

Jason Earls, Oct 10 2001

Keywords

Crossrefs

Cf. A001414 (sopfr), A008472 (sopf).

Programs

  • PARI
    sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    sopfr(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]*f[i, 2]); return(s) }
    { n=0; for (m=1, 10^9, if (sopfr(m)==sopf(m + 1), write("b064675.txt", n++, " ", m); if (n==500, break)) ) } \\ Harry J. Smith, Sep 21 2009
    
  • Python
    from sympy import factorint
    def aupton(terms):
      alst, k, sopfk, sopfrk, sopfkp1, sopfrkp1 = [], 2, 2, 3, 2, 3
      while len(alst) < terms:
        if sopfrk == sopfkp1: alst.append(k)
        k += 1
        fkp1 = factorint(k+1)
        sopfk, sopfkp1 = sopfkp1, sum(p for p in fkp1)
        sopfrk, sopfrkp1 = sopfrkp1, sum(p*fkp1[p] for p in fkp1)
      return alst
    print(aupton(40)) # Michael S. Branicky, May 27 2021