A064716 Smallest member of three consecutive numbers each of which is the sum of two nonzero squares (not necessarily different).
72, 232, 288, 520, 584, 800, 808, 1096, 1152, 1224, 1312, 1600, 1664, 1744, 1800, 1872, 1960, 2248, 2312, 2384, 2592, 2600, 2824, 3328, 3392, 3528, 3600, 4112, 4176, 4328, 4624, 5120, 5328, 5408, 5904, 6056, 6120, 6272, 6352, 6408, 6568, 6920, 8080
Offset: 1
Keywords
Examples
72 = 6^2 + 6^2, 73 = 3^2 + 8^2, 74 = 5^2 + 7^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- W. Allen Whitworth, Problem 356, The Mathematical Gazette, Vol. 1, No. 20 (Mar. 1900), p. 338.
Programs
-
Maple
N:= 10000: # to get all terms <= N S:= {seq(seq(a^2+b^2, b=1..floor(sqrt(N+2-a^2))),a=1..floor(sqrt(N+2)))}: sort(convert(S intersect map(`-`,S,1) intersect map(`-`,S,2),list)); # Robert Israel, Apr 14 2016
-
Mathematica
a = Table[n^2, {n, 1, 100}]; c = {}; Do[ c = Append[c, a[[i]] + a[[j]]], {i, 1, 100}, {j, 1, i} ]; c = Union[c]; c[[ Select[ Range[ Length[c] - 2], c[[ # ]] + 2 == c[[ # + 2 ]] & ]]] Select[Range@ 8080, AllTrue[# + {0, 1, 2}, Length[ PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] &] (* _Michael De Vlieger, Apr 13 2016, Version 10 *)
-
PARI
is(n)= for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2)); lista(nn) = {for(n=1,nn,if(is(n)==1&&is(n+1)==1&&is(n+2)==1,print1(n,", ")))}; \\ Jinyuan Wang, Feb 23 2019
Comments