cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064785 Number of partially labeled trees with n nodes (6 of which are labeled).

Original entry on oeis.org

1296, 16807, 134960, 858578, 4741835, 23786827, 111254536, 493289047, 2096891419, 8614217489, 34402073301, 134162057607, 512703873915, 1925300176534, 7120276125066, 25981116938906, 93678940211218
Offset: 6

Views

Author

Vladeta Jovovic, Oct 19 2001

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.

Crossrefs

Column k=6 of A034799.
Cf. A042977.

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-2)^6* (1296-2633* B(n-2)+ 2128*B(n-2)^2 -806*B(n-2)^3 +120*B(n-2)^4)/ (1-B(n-2))^9, x=0, n+1),x,n): seq(a(n), n=6..22); # Alois P. Heinz, Aug 22 2008
  • Mathematica
    jmax = 23; B[_] = 0;
    Do[B[x_] = x*Exp[Sum[B[x^k]/k, {k, 1, j}]]+O[x]^j // Normal, {j, 1, jmax}];
    A[x_] = B[x]^6*(1296 - 2633*B[x] + 2128*B[x]^2 - 806*B[x]^3 + 120*B[x]^4)/ (1 - B[x])^9;
    CoefficientList[A[x] + O[x]^jmax, x] // Drop[#, 6]& (* Jean-François Alcover, Apr 25 2022 *)

Formula

G.f.: A(x) = B(x)^6*(1296-2633*B(x)+2128*B(x)^2-806*B(x)^3+120*B(x)^4)/(1-B(x))^9, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.