cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063490 a(n) = (2*n - 1)*(7*n^2 - 7*n + 6)/6.

Original entry on oeis.org

1, 10, 40, 105, 219, 396, 650, 995, 1445, 2014, 2716, 3565, 4575, 5760, 7134, 8711, 10505, 12530, 14800, 17329, 20131, 23220, 26610, 30315, 34349, 38726, 43460, 48565, 54055, 59944, 66246, 72975, 80145, 87770, 95864, 104441, 113515, 123100, 133210, 143859, 155061
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

From Omar E. Pol, Oct 23 2019: (Start)
a(n) is also the sum of terms that are in the n-th finite row and in the n-th finite column of the square [1,n]x[1,n] of the natural number array A000027; e.g., the [1,3]x[1,3] square is
1..3..6
2..5..9
4..8..13,
so that a(1) = 1, a(2) = 2 + 3 + 5 = 10, a(3) = 4 + 6 + 8 + 9 + 13 = 40.
Hence the partial sums give A185505. (End)

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(7*n^2-7*n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2*n-1)*(7*n^2-7*n+6)/6, {n,1,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,10,40,105}, 50] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(7*n^2 - 7*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-6 + 12*x + 21*x^2 + 14*x^3 )*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

G.f.: x*(1+x)*(1+5*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
a(n) = Sum_{k = n^2-2*n+2..n^2} A064788(k). - Lior Manor, Jan 13 2013
From G. C. Greubel, Dec 01 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (-6 + 12*x + 21*x^2 + 14*x^3)*exp(x)/6 + 1. (End)

A060736 Array of square numbers read by antidiagonals in up direction.

Original entry on oeis.org

1, 2, 4, 5, 3, 9, 10, 6, 8, 16, 17, 11, 7, 15, 25, 26, 18, 12, 14, 24, 36, 37, 27, 19, 13, 23, 35, 49, 50, 38, 28, 20, 22, 34, 48, 64, 65, 51, 39, 29, 21, 33, 47, 63, 81, 82, 66, 52, 40, 30, 32, 46, 62, 80, 100
Offset: 1

Views

Author

Frank Ellermann, Apr 23 2001

Keywords

Comments

A simple permutation of natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. - Boris Putievskiy, Jan 09 2013

Examples

			1 4 9 16 .. => a(1)= 1
2 3 8 15 .. => a(2)= 2, a(3)=4
5 6 7 14 .. => a(4)= 5, a(5)=3, a(6)=9
10 11 12 13 .. => a(7)=10, a(8)=6, a(9)=8, a(10)=16
		

Crossrefs

Cf. A060734. Inverse permutation: A064788, the first inverse function (numbers of rows) A194258, the second inverse function (numbers of columns) A194195.

Programs

  • Mathematica
    Table[ If[n < 2*k-1, k^2 + k - n, (n-k)^2 + k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 09 2013 *)
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i>=j:
       result=i**2-j+1
    else:
       result=(j-1)**2+i
    # Boris Putievskiy, Jan 09 2013

Formula

T(n+1, k)=n*n+k, T(k, n+1)=(n+1)*(n+1)+1-k, 1 <= k <= n+1.
a(n)=i^2-j+1 if i >= j, a(n)=(j-1)^2 + i if i < j, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Jan 09 2013

A064790 Inverse permutation to A060734.

Original entry on oeis.org

1, 3, 5, 2, 6, 9, 13, 8, 4, 10, 14, 19, 25, 18, 12, 7, 15, 20, 26, 33, 41, 32, 24, 17, 11, 21, 27, 34, 42, 51, 61, 50, 40, 31, 23, 16, 28, 35, 43, 52, 62, 73, 85, 72, 60, 49, 39, 30, 22, 36, 44, 53, 63, 74, 86, 99, 113, 98, 84, 71, 59, 48, 38, 29, 45, 54, 64, 75, 87, 100, 114
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2001

Keywords

Comments

From Boris Putievskiy, Mar 14 2013: (Start)
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). This sequence is A188568 as table read by boustrophedonic ("ox-plowing") method - layer clockwise, layer counterclockwise and so. The same table A188568 read layer by layer clockwise is A194280. (End)

Examples

			From _Boris Putievskiy_, Mar 14 2013: (Start)
The start of the sequence as table:
  1....2...6...7..15..16..28...
  3....5...9..12..20..23..35...
  4....8..13..18..26..31..43...
  10..14..19..25..33..40..52...
  11..17..24..32..41..50..62...
  21..27..34..42..51..61..73...
  22..30..39..49..60..72..85...
  ...
The start of the sequence as triangular array read by rows:
  1;
  3,5,2;
  6,9,13,8,4;
  10,14,19,25,18,12,7;
  15,20,26,33,41,32,24,17,11;
  21,27,34,42,51,61,50,40,31,23,16;
  28,35,43,52,62,73,85,72,60,49,39,30,22;
  ...
Row number r contains 2*r-1 numbers. (End)
		

Crossrefs

Formula

a(n) = (i+j-1)*(i+j-2)/2+i, where i=min(t; t^2-n+1), j=min(t; n-(t-1)^2), t=floor(sqrt(n-1))+1. - Boris Putievskiy, Dec 24 2012
Showing 1-3 of 3 results.