cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064803 Number of subgroups of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 16, 28, 129, 64, 448, 116, 802, 445, 1024, 268, 3612, 368, 1856, 1792, 4387, 616, 7120, 764, 8256, 3248, 4288, 1108, 22456, 2607, 5888, 5776, 14964, 1744, 28672, 1988, 22308, 7504, 9856, 7424, 57405, 2816, 12224, 10304, 51328, 3448, 51968, 3788, 34572, 28480, 17728, 4516, 122836, 9009, 41712
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 21 2001

Keywords

Crossrefs

Programs

  • Maple
    A064803 := proc(n)
        local a,f,nu,p,j ;
        a := 1 ;
        for f in ifactors(n)[2] do
            nu := op(2,f) ;
            p := op(1,f) ;
            add( (nu-floor((j-1)/2))*(2*j-floor((j-1)/2))*p^(2*nu-j),j=0..2*nu) ;
            a := a*% ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 11 2013
  • Mathematica
    f[p_, e_] := Sum[(e - Floor[(j - 1)/2])*(2*j - Floor[(j - 1)/2])*p^(2*e - j), {j, 0, 2*e}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)

Formula

For a prime p: a(p) = 2*(p^2+p+2). - Vladeta Jovovic, Oct 22 2001
Multiplicative with a(p^e) = Sum_{j=0..2*e} (e - floor((j - 1)/2))*(2*j - floor((j - 1)/2))*p^(2*e - j). - Amiram Eldar, Nov 29 2022

Extensions

More terms from Laszlo Toth, May 11 2013