A064803 Number of subgroups of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).
1, 16, 28, 129, 64, 448, 116, 802, 445, 1024, 268, 3612, 368, 1856, 1792, 4387, 616, 7120, 764, 8256, 3248, 4288, 1108, 22456, 2607, 5888, 5776, 14964, 1744, 28672, 1988, 22308, 7504, 9856, 7424, 57405, 2816, 12224, 10304, 51328, 3448, 51968, 3788, 34572, 28480, 17728, 4516, 122836, 9009, 41712
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Mario Hampejs and László Tóth, On the subgroups of finite Abelian groups of rank three, Annales Univ. Sci. Budapest., Sect. Comp. 39 (2013) 111-124.
Programs
-
Maple
A064803 := proc(n) local a,f,nu,p,j ; a := 1 ; for f in ifactors(n)[2] do nu := op(2,f) ; p := op(1,f) ; add( (nu-floor((j-1)/2))*(2*j-floor((j-1)/2))*p^(2*nu-j),j=0..2*nu) ; a := a*% ; end do: a ; end proc: # R. J. Mathar, May 11 2013
-
Mathematica
f[p_, e_] := Sum[(e - Floor[(j - 1)/2])*(2*j - Floor[(j - 1)/2])*p^(2*e - j), {j, 0, 2*e}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)
Formula
For a prime p: a(p) = 2*(p^2+p+2). - Vladeta Jovovic, Oct 22 2001
Multiplicative with a(p^e) = Sum_{j=0..2*e} (e - floor((j - 1)/2))*(2*j - floor((j - 1)/2))*p^(2*e - j). - Amiram Eldar, Nov 29 2022
Extensions
More terms from Laszlo Toth, May 11 2013