A064834 If n (in base 10) is d_1 d_2 ... d_k then a(n) = Sum_{i = 1..[k/2] } |d_i - d_{k-i+1}|.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0, 1, 2, 3
Offset: 0
Examples
a(456) = | 4 - 6 | = 2, a(4567) = | 4 - 7 | + | 5 - 6 | = 4.
Links
Programs
-
Haskell
a064834 n = sum $ take (length nds `div` 2) $ map abs $ zipWith (-) nds $ reverse nds where nds = a031298_row n -- Reinhard Zumkeller, Sep 18 2013
-
Maple
f:=proc(n) local t1,t2,i; t1:=convert(n,base,10); t2:=nops(t1); add( abs(t1[i]-t1[t2+1-i]),i=1..floor(t2/2) ); end; [seq(f(n),n=0..120)]; # N. J. A. Sloane, Mar 24 2013
-
Mathematica
f[n_] := (k = IntegerDigits[n]; l = Length[k]; Sum[ Abs[ k[[i]] - k[[l - i + 1]]], {i, 1, Floor[l/2] } ] ); Table[ f[n], {n, 0, 100} ]
-
Python
from sympy import floor, ceiling def A064834(n): x, y = str(n), 0 lx2 = len(x)/2 for a,b in zip(x[:floor(lx2)],x[:ceiling(lx2)-1:-1]): y += abs(int(a)-int(b)) return y # Chai Wah Wu, Aug 09 2014
Comments