cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A064859 Decimal expansion of sum of reciprocals of lcm(1..n) = A003418(n).

Original entry on oeis.org

1, 7, 8, 7, 7, 8, 0, 4, 5, 6, 1, 7, 2, 4, 6, 6, 5, 4, 6, 0, 6, 4, 9, 3, 4, 3, 2, 6, 0, 2, 5, 6, 6, 2, 7, 9, 4, 5, 9, 3, 9, 6, 1, 7, 4, 7, 2, 9, 6, 9, 6, 0, 8, 3, 7, 2, 5, 3, 0, 2, 6, 9, 9, 2, 9, 2, 2, 8, 9, 0, 2, 3, 5, 0, 8, 2, 2, 3, 2, 6, 1, 5, 5, 2, 8, 3, 3, 6, 8, 7, 8, 0, 8, 5, 6, 9, 7, 9, 7, 9, 9, 4, 6, 9, 5
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Comments

This constant is irrational (Erdős and Graham, 1980). - Amiram Eldar, Apr 13 2020

Examples

			1.7877804561724665460649343260256627945939617472969608372530269929228902350...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range@ n; RealDigits[Plus @@ (1/Array[f, 255]), 10, 111][[1]] (* Robert G. Wilson v, Jul 11 2011 *)
  • PARI
    suminf(k=1, 1/lcm(vector(k, j, j))) \\ Michel Marcus, Mar 11 2018

Formula

Equals Sum_{j>=1} 1/lcm(1..j).

A064857 Numerators of partial sums of reciprocals of lcm(1..n) = A003418(n).

Original entry on oeis.org

1, 3, 5, 7, 53, 107, 25, 1501, 563, 901, 12389, 16519, 322121, 644243, 53687, 1288489, 3650719, 4380863, 18917363, 3557111, 104045497, 416181989, 2393046437, 455818369, 23930464373, 47860928747, 10255913303, 11044829711
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Examples

			n = 7: LCM values: 1, 2, 6, 12, 60, 60, 420; partial sum = 1 + 1/2 + 1/6 + 1/12 + 1/60 + 1/60 + 1/420 = (420 + 210 + 70 + 35 + 7 + 7 + 1)/420 = 750/420 = 25/14, so a(7) = 25.
		

Crossrefs

Programs

  • Maple
    R:= 1: m:= 1: for n from 2 to 100 do m:= ilcm(m,n); R:= R,1/m od:
    P:= ListTools:-PartialSums([R]):
    map(numer,P); # Robert Israel, Jan 30 2025
  • Mathematica
    q[x_] := Apply[LCM, Table[j, {j, 1, x}]] Table[Numerator[Apply[Plus, Table[1/q[w], {w, 1, m}]]], {m, 1, 30}]
    Accumulate[Table[1/LCM@@Range[n],{n,30}]]//Numerator (* Harvey P. Dale, Aug 08 2021 *)

Formula

a(n) = numerator(Sum_{j=1..n} 1/lcm(1..n)).

A064889 Denominators of partial sums of reciprocals of A051451 (A051451 includes lcm(1,...,x), x=power of prime from A000961 and also contains 1).

Original entry on oeis.org

1, 2, 3, 4, 30, 420, 840, 1260, 9240, 9009, 240240, 471240, 232792560, 535422888, 26771144400, 181704600, 4822131600, 36100888223400, 3702655202400, 76327592243760, 737576396429600, 362291852261631600, 6416241209619040800
Offset: 1

Views

Author

Labos Elemer, Oct 11 2001

Keywords

Examples

			n=6, sum = (1/1) + (1/2) + (1/6) + (1/12) + (1/60) + (1/420) = 743/420, the denominator = a(6) = 743. Remark: If 1 is omitted from A051451, the denominators of partial sums of reciprocals do not change; however, numerators are changing, not compatible with these denominators (see A064888).
		

Crossrefs

Formula

a(n) = denominator(Sum_{k=1..n} 1/A051451(k)).
Showing 1-3 of 3 results.