A064868 The minimal number which has multiplicative persistence 4 in base n.
2344, 172, 131, 174, 52, 77, 75, 83, 75, 81, 89, 95, 101, 104, 110, 133, 143, 127, 133, 119, 124, 129, 134, 139, 144, 149, 154, 159, 164, 169, 174, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 5
Examples
a(6) = 172 because 172 = [444]->[144]->[24]->[12]->[2] and no lesser n has persistence 4 in base 6.
Links
- Michael De Vlieger, Table of n, a(n) for n = 5..10000
- M. R. Diamond and D. D. Reidpath, A counterexample to a conjecture of Sloane and Erdos, J. Recreational Math., 1998 29(2), 89-92.
- Sascha Kurz, Persistence in different bases
- T. Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7.
- C. Rivera, Minimal prime with persistence p
- N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Mathematica
With[{m = 4, r = 24}, Table[Block[{k = 1}, While[Length@ FixedPointList[Times @@ IntegerDigits[#, n] &, k] != m + 2, k++]; k], {n, m + 1, r}]~Join~Array[(m + 1) # - Floor[#/r] &, 34, r + 1]] (* Michael De Vlieger, Aug 30 2021 *)
-
PARI
pers(nn, b) = {ok = 0; p = 0; until (ok, d = digits(nn, b); if (#d == 1, ok = 1, p++); nn = prod(k=1, #d, d[k]); if (nn == 0, ok = 1);); return (p);} a(n) = {i=0; while (pers(i, n) != 4, i++); return (i);} \\ Michel Marcus, Jun 30 2013
Formula
a(n) = 5*n-floor(n/24) for n > 23.
From Chai Wah Wu, Mar 07 2025: (Start)
a(n) = a(n-1) + a(n-24) - a(n-25) for n > 48.
G.f.: x^5*(18*x^43 - x^42 + 21*x^41 - 5*x^40 - 18*x^39 - x^38 + 2*x^37 - x^36 - x^35 - 3*x^34 - x^33 + 13*x^32 - 3*x^31 + 7*x^30 - 20*x^29 + 127*x^28 - 38*x^27 + 46*x^26 + 2177*x^25 - 2339*x^24 + 5*x^23 + 5*x^22 + 5*x^21 + 5*x^20 - 14*x^19 + 6*x^18 - 16*x^17 + 10*x^16 + 23*x^15 + 6*x^14 + 3*x^13 + 6*x^12 + 6*x^11 + 8*x^10 + 6*x^9 - 8*x^8 + 8*x^7 - 2*x^6 + 25*x^5 - 122*x^4 + 43*x^3 - 41*x^2 - 2172*x + 2344)/(x^25 - x^24 - x + 1). (End)
Extensions
Example modified by Harvey P. Dale, Oct 19 2022
Comments