cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064894 Binary dilution of n. GCD of exponents in binary expansion of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Marc LeBrun, Oct 11 2001

Keywords

Comments

All bits of n in positions not divisible by a(n) are zero. Hence n in binary contains blocks of a(n)-1 "diluting" 0's (for n>1). Also for n>1, a(2^n) = a(2^n + 1) = n. For i,j odd, a(ij) = GCD(a(i),a(j)).

Examples

			577 = 2^0 + 2^6 + 2^9, GCD(0,6,9) = 3 = a(577).
		

Crossrefs

Programs

  • Mathematica
    A064894[n_] := Apply[GCD, Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]] - 1];
    Array[A064894, 100, 0] (* Paolo Xausa, Feb 13 2024 *)
  • PARI
    a(n) = if (n==0, 0, my(ve = select(x->x==1, Vecrev(binary(n)), 1)); gcd(vector(#ve, k, ve[k]-1))); \\ Michel Marcus, Apr 12 2016

Formula

If n = 2^e0 + 2^e1 +... then a(n) = GCD(e0, e1, ...).
a(A064896(n)) = A056538(n)