cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064898 Stirling transform of derangements numbers.

Original entry on oeis.org

1, 0, 1, 5, 28, 199, 1721, 17394, 200803, 2607301, 37614922, 596933193, 10334308029, 193820343248, 3914731286181, 84716451763961, 1955520075368116, 47960724925499219, 1245468599978831333, 34139796082603477690, 985066290112167474255, 29844155285575945561913
Offset: 0

Views

Author

Karol A. Penson, Oct 12 2001

Keywords

Crossrefs

Cf. A000166.

Programs

  • Maple
    g:= proc(n) option remember;
         `if`(n<2, 1-n, (n-1)*(g(n-1)+g(n-2)))
        end:
    b:= proc(n, m) option remember;
         `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..27);  # Alois P. Heinz, Feb 16 2023
  • Mathematica
    A000166[n_] := Round[ n!/Exp[1] ]; A000166[0] = 1; A000166[1] = 0; a[n_] := Sum[ StirlingS2[n, k]*A000166[k], {k, 0, n}]; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 21 2011, after given formula *)

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A000166(k).
E.g.f.: exp(-(exp(x)-1))/(2-exp(x)).
a(n) ~ n!/(2*exp(1)*log(2)^(n+1)). - Vaclav Kotesovec, Jun 29 2013