A064898 Stirling transform of derangements numbers.
1, 0, 1, 5, 28, 199, 1721, 17394, 200803, 2607301, 37614922, 596933193, 10334308029, 193820343248, 3914731286181, 84716451763961, 1955520075368116, 47960724925499219, 1245468599978831333, 34139796082603477690, 985066290112167474255, 29844155285575945561913
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..424
- H. Belbachir, Y. Djemmada and L. Németh, The deranged Bell numbers, arXiv:2102.00139 [math.GM], 2021.
Crossrefs
Cf. A000166.
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1-n, (n-1)*(g(n-1)+g(n-2))) end: b:= proc(n, m) option remember; `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..27); # Alois P. Heinz, Feb 16 2023
-
Mathematica
A000166[n_] := Round[ n!/Exp[1] ]; A000166[0] = 1; A000166[1] = 0; a[n_] := Sum[ StirlingS2[n, k]*A000166[k], {k, 0, n}]; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 21 2011, after given formula *)
Formula
a(n) = Sum_{k=0..n} Stirling2(n,k)*A000166(k).
E.g.f.: exp(-(exp(x)-1))/(2-exp(x)).
a(n) ~ n!/(2*exp(1)*log(2)^(n+1)). - Vaclav Kotesovec, Jun 29 2013