cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064909 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 11.

Original entry on oeis.org

481, 1157, 1343, 1921, 2171, 2263, 2369, 2509, 3077, 3097, 3427, 3523, 3683, 4171, 4537, 4541, 4811, 5213, 5263, 5389, 5543, 6107, 6227, 6707, 7123, 7241, 8279, 8593, 8621, 8717, 8857, 8873, 9353, 9607, 10411, 10537, 11359, 11461, 11567, 11747, 11761, 11819
Offset: 1

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A064899-A064911.

Programs

  • Mathematica
    pmp11Q[n_]:=Module[{fi=FactorInteger[n][[All,1]]},Mod[fi[[2]],fi[[1]]] == 11]; Select[ Range[12000],PrimeNu[#]==PrimeOmega[#]==2&&pmp11Q[#]&] (* Harvey P. Dale, Jun 25 2018 *)
  • PARI
    isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 11);
  • Python
    from sympy import factorint
    def is_A064909(n):
        f = factorint(n)
        return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 11)
    def first_A064909(n):
        x = 1
        an = []
        while len(an) < n:
            if is_A064909(x): an.append(x)
            x += 2
        return an # John Cerkan, Apr 14 2018
    

Extensions

Offset and name fixed by John Cerkan, Apr 12 2018