A064909 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 11.
481, 1157, 1343, 1921, 2171, 2263, 2369, 2509, 3077, 3097, 3427, 3523, 3683, 4171, 4537, 4541, 4811, 5213, 5263, 5389, 5543, 6107, 6227, 6707, 7123, 7241, 8279, 8593, 8621, 8717, 8857, 8873, 9353, 9607, 10411, 10537, 11359, 11461, 11567, 11747, 11761, 11819
Offset: 1
Keywords
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
pmp11Q[n_]:=Module[{fi=FactorInteger[n][[All,1]]},Mod[fi[[2]],fi[[1]]] == 11]; Select[ Range[12000],PrimeNu[#]==PrimeOmega[#]==2&&pmp11Q[#]&] (* Harvey P. Dale, Jun 25 2018 *)
-
PARI
isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 11);
-
Python
from sympy import factorint def is_A064909(n): f = factorint(n) return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 11) def first_A064909(n): x = 1 an = [] while len(an) < n: if is_A064909(x): an.append(x) x += 2 return an # John Cerkan, Apr 14 2018
Extensions
Offset and name fixed by John Cerkan, Apr 12 2018