A064935 Numbers k such that (k+3)^(k+2) mod (k+1) = k.
4, 64, 376, 1188, 1468, 25804, 58588, 134944, 137344, 170584, 272608, 285388, 420208, 538732, 592408, 618448, 680704, 778804, 1163064, 1520440, 1700944, 2099200, 2831008, 4020028, 4174168, 4516108, 5059888, 5215768, 5447272
Offset: 1
Keywords
Examples
(4+3)^(4+2) mod (4+1) = 7^6 mod 5 = 117649 mod 5 = 4, so 4 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..350
Crossrefs
Equals A055685(n+1) - 2.
Programs
-
Maple
filter:= proc(k) 2 &^(k+2) mod (k+1) = k end proc: select(filter, [seq(i,i=4..10^7,4)]); # Robert Israel, Feb 13 2025
-
PARI
isok(k) = Mod(k+3, k+1)^(k+2) == k; \\ Michel Marcus, Jul 12 2021
Comments