cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064950 a(n) = Sum_{i|n, j|n} lcm(i,j).

Original entry on oeis.org

1, 7, 10, 27, 16, 70, 22, 83, 55, 112, 34, 270, 40, 154, 160, 227, 52, 385, 58, 432, 220, 238, 70, 830, 141, 280, 244, 594, 88, 1120, 94, 579, 340, 364, 352, 1485, 112, 406, 400, 1328, 124, 1540, 130, 918, 880, 490, 142, 2270, 267, 987, 520, 1080, 160, 1708
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[LCM[i,j], {i, Divisors[n]}, {j, Divisors[n]}];
    Array[a,60] (* Jean-François Alcover, Jun 03 2019 *)
    f[p_, e_] := (p^(e+2) - 3*p^(e+1) + p + 1 + 2*p^(e+2)*e - 2*p^(e+1)*e)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    for (n=1, 1000, d=divisors(n); a=sum(i=1, length(d), numdiv(d[i]^2)*d[i]); write("b064950.txt", n, " ", a)) \\ Harry J. Smith, Oct 01 2009
    
  • Sage
    def A064950(n) :
        tau = sloane.A000005; D = divisors(n)
        return reduce(lambda x,y: x+y, [d*tau(d^2) for d in D])
    [A064950(n) for n in (1..54)] # Peter Luschny, Sep 10 2012

Formula

a(n) = Sum_{d|n} d*tau(d^2).
Multiplicative with a(p^e) = (p^(e+2) - 3*p^(e+1) + p + 1 + 2*p^(e+2)*e - 2*p^(e+1)*e)/(p-1)^2.