A065036 Product of the cube of a prime (A030078) and a different prime.
24, 40, 54, 56, 88, 104, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112
Offset: 1
Examples
a(4)= 56 since 56 = 2*2*2*7.
Programs
-
Mathematica
Select[ Range[1500], Sort[ Transpose[ FactorInteger[ # ]] [[2]]] == {1, 3} & ] Module[{upto=1200},Select[(Union[Flatten[{#[[1]]^3 #[[2]],#[[1]]#[[2]]^3}&/@Subsets[Prime[Range[upto/8]],{2}]]]),#<=upto&]] (* Harvey P. Dale, May 23 2015 *)
-
PARI
list(lim)=my(v=List(),t);forprime(p=2,(lim\2)^(1/3),t=p^3; forprime(q=2,lim\t,if(p==q,next);listput(v,t*q)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
PARI
is(n)=my(f=factor(n)[,2]); f==[3,1]~||f==[1,3]~ \\ Charles R Greathouse IV, Oct 15 2015
-
Python
from sympy import primepi, primerange, integer_nthroot def A065036(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Formula
A002033(a(n)) = 20. - Juri-Stepan Gerasimov, Sep 26 2009
A089233(a(n)) = 3. - Reinhard Zumkeller, Sep 04 2013
A000005(a(n)) = 8. - Altug Alkan, Nov 11 2015
Comments