cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065036 Product of the cube of a prime (A030078) and a different prime.

Original entry on oeis.org

24, 40, 54, 56, 88, 104, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112
Offset: 1

Views

Author

Alford Arnold, Nov 04 2001

Keywords

Comments

This sequence appears on row 8 of the list illustrated in A064839 and is similar to A054753 which appears on row 6. Previous rows are generated by A000007, A000040, A001248, A006881, A030078 respectively.
Or, the numbers n such that 20=number of perfect partitions of n. - Juri-Stepan Gerasimov, Sep 26 2009

Examples

			a(4)= 56 since 56 = 2*2*2*7.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[1500], Sort[ Transpose[ FactorInteger[ # ]] [[2]]] == {1, 3} & ]
    Module[{upto=1200},Select[(Union[Flatten[{#[[1]]^3 #[[2]],#[[1]]#[[2]]^3}&/@Subsets[Prime[Range[upto/8]],{2}]]]),#<=upto&]] (* Harvey P. Dale, May 23 2015 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\2)^(1/3),t=p^3; forprime(q=2,lim\t,if(p==q,next);listput(v,t*q)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • PARI
    is(n)=my(f=factor(n)[,2]); f==[3,1]~||f==[1,3]~ \\ Charles R Greathouse IV, Oct 15 2015
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A065036(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A002033(a(n)) = 20. - Juri-Stepan Gerasimov, Sep 26 2009
A089233(a(n)) = 3. - Reinhard Zumkeller, Sep 04 2013
A000005(a(n)) = 8. - Altug Alkan, Nov 11 2015