A065061 Numbers k such that sigma(k) - tau(k) is a prime.
3, 8, 162, 512, 1250, 8192, 31250, 32768, 41472, 663552, 2531250, 3748322, 5120000, 6837602, 7558272, 8000000, 15780962, 33554432, 35701250, 42762752, 45334242, 68024448, 75031250, 78125000, 91125000, 137149922, 243101250, 512000000, 907039232, 959570432
Offset: 1
Keywords
Examples
162 is a term since sigma(162) - tau(162) = 363 - 10 = 353, which is prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5000 (terms 1..265 from Kevin P. Thompson)
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[ DivisorSigma[1, n] - DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
-
PARI
{ n=0; for (m=1, 10^9, if (isprime(sigma(m) - numdiv(m)), write("b065061.txt", n++, " ", m); if (n==100, return)) ) } \\ Harry J. Smith, Oct 05 2009
-
Python
from itertools import count, islice from sympy import isprime, divisor_sigma as s, divisor_count as t def agen(): # generator of terms yield 3 yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)-t(k))) print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022
Extensions
a(17)-a(28) from Harry J. Smith, Oct 05 2009
a(29)-a(30) from Kevin P. Thompson, Jun 20 2022
Comments