cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065061 Numbers k such that sigma(k) - tau(k) is a prime.

Original entry on oeis.org

3, 8, 162, 512, 1250, 8192, 31250, 32768, 41472, 663552, 2531250, 3748322, 5120000, 6837602, 7558272, 8000000, 15780962, 33554432, 35701250, 42762752, 45334242, 68024448, 75031250, 78125000, 91125000, 137149922, 243101250, 512000000, 907039232, 959570432
Offset: 1

Views

Author

Jason Earls, Nov 06 2001

Keywords

Comments

From Kevin P. Thompson, Jun 20 2022: (Start)
Terms greater than 3 must be twice a square (see A064205).
No terms are congruent to 4 or 6 (mod 10) (see A064205).
(End)

Examples

			162 is a term since sigma(162) - tau(162) = 363 - 10 = 353, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ DivisorSigma[1, n] - DivisorSigma[0, n]], Print[n]], {n, 1, 10^7}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(sigma(m) - numdiv(m)), write("b065061.txt", n++, " ", m); if (n==100, return)) ) } \\ Harry J. Smith, Oct 05 2009
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisor_sigma as s, divisor_count as t
    def agen(): # generator of terms
        yield 3
        yield from (k for k in (2*i*i for i in count(1)) if isprime(s(k)-t(k)))
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 20 2022

Extensions

a(17)-a(28) from Harry J. Smith, Oct 05 2009
a(29)-a(30) from Kevin P. Thompson, Jun 20 2022