A065069 Numbers n such that Fibonacci(n) is not squarefree, but for all proper divisors k of n, Fibonacci(k) is squarefree.
6, 25, 56, 91, 110, 153, 406, 703, 752, 820, 915, 979, 1431, 1892, 2147, 2701, 2943, 3029, 3422, 4378, 4556, 4753, 4970, 5513, 6394, 7868, 8841, 9453, 10712, 12403, 13508, 13546, 15051, 16256, 17030, 17267, 18023, 18721, 19503, 20827, 21206
Offset: 1
Keywords
Examples
a(1) = 6 because 2^2 divides Fibonacci(6) but no smaller Fibonacci number.
Links
- Hisanori Mishima, Factorizations of Fibonacci numbers: n=1..100, n=101..200, n=201..300, n=301..400, n=401..480.
- Blair Kelly, Fibonacci and Lucas Factorizations
Crossrefs
Programs
-
Mathematica
<< NumberTheory`NumberTheoryFunctions`; a = {}; l = 0; Do[m = n; If[k = 1; While[k < l + 1 && !IntegerQ[ n/ a[[k]]], k++ ]; k > l, If[ !SquareFreeQ[ Fibonacci[n]], a = Append[a, n]; l++; Print[n]]], {n, 1, 480} ] nLimit=50000; i=3; pMax=1; iMax=1; While[p=Transpose[FactorInteger[Fibonacci[i]]][[1, -1]]; i*p
pMax, pMax=p; iMax=i]; i++ ]; nMax=PrimePi[pMax]; fs={}; Do[p=Prime[n]; k=1; found=False; While[found=(Mod[Fibonacci[k], p]==0); !found&&k*p 0, j=i+1; While[j<=Length[fs], If[Mod[fs[[j]], n]==0, fs[[j]]=0]; j++ ]]; i++ ]; Select[fs, #>0& -
PARI
is_A065069(n)=!fordiv(n,k,k>1 && k
1 \\
Extensions
One more term from Robert G. Wilson v, Nov 08 2001
More terms from T. D. Noe, Jul 24 2003
Comments