cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065135 Numbers m such that prime(m) = pi(m)*k + 1 for some k.

Original entry on oeis.org

3, 4, 6, 7, 10, 11, 14, 21, 37, 45, 47, 53, 55, 63, 75, 81, 101, 115, 121, 125, 136, 183, 209, 230, 271, 313, 319, 327, 348, 377, 399, 425, 460, 575, 581, 738, 786, 792, 850, 881, 917, 1076, 1110, 1152, 1246, 1519, 1740, 2062, 2074, 2119, 2144, 2327, 2361
Offset: 1

Views

Author

Labos Elemer, Oct 15 2001

Keywords

Comments

Solutions to A000040(x) mod A000720(x) = 1.
Values satisfying A065133(x) = 1.

Examples

			m = 581 is a term because prime(581) = 4211 = 106*40 + 1 = 40*pi(581) + 1.
		

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{r = Range[2, lim], p}, p = PrimePi[r]; 1 + Position[Mod[Prime[r], p], 1] // Flatten]; seq[2400] (* Amiram Eldar, Mar 13 2025 *)
  • PARI
    isok(m) = if (m>1, prime(m) % primepi(m) == 1); \\ Michel Marcus, Mar 04 2022
    
  • PARI
    list(lim) = {my(k = 1); forprime(p = 3, lim, k++; if(p % primepi(k) == 1, print1(k, ", ")));} \\ Amiram Eldar, Mar 13 2025