cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065149 Composite numbers m such that phi(m)*sigma(m) is divisible by m-1.

Original entry on oeis.org

10, 33, 65, 136, 145, 261, 385, 451, 897, 946, 1281, 1441, 1665, 1729, 2241, 2353, 3585, 5185, 6721, 7201, 8380, 8911, 8961, 11521, 11782, 12673, 12801, 17101, 18241, 20737, 25201, 26625, 26677, 26937, 29697, 29953, 30721, 30889, 32896
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Examples

			m=136, phi(136)=64, sigma(136)=270, product=17280, quotient=128; for primes the formula holds.
		

Crossrefs

Programs

  • GAP
    Filtered([2..40000],m->Phi(m)*Sigma(m) mod (m-1)=0 and not IsPrime(m)); # Muniru A Asiru, Jun 18 2018
  • Maple
    with(numtheory): select(m->modp(phi(m)*sigma(m),m-1)=0 and not isprime(m),[$2..40000]); # Muniru A Asiru, Jun 18 2018
  • Mathematica
    Do[s=EulerPhi[n]*DivisorSigma[1, n]; If[IntegerQ[s/(n-1)]&&!PrimeQ[n], Print[n]], {n, 1, 100000}]
  • PARI
    { n=0; for (m=2, 10^9, s=eulerphi(m)*sigma(m); if (s%(m-1) == 0 && !isprime(m), write("b065149.txt", n++, " ", m); if (n==500, return)) ) } \\ Harry J. Smith, Oct 12 2009
    

Formula

(A000010(m)*A000203(m)) mod (m-1) = 0, m is composite.

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 12 2009