A065159 Binary string self-substitutions: a(n) is obtained by substituting the binary expansion of n for each 1-bit in the binary expansion of n.
0, 1, 4, 15, 16, 85, 108, 511, 64, 585, 660, 5819, 816, 7085, 7644, 65535, 256, 4369, 4644, 78451, 5200, 87381, 91564, 1531639, 6336, 105625, 109876, 1825659, 118384, 1961821, 2029500, 33554431, 1024, 33825, 34884, 1149155, 37008, 1217189, 1250124, 41056743
Offset: 0
Examples
a(5): 5 = 101 -> (101)0(101) = 1010101 = 85.
Links
- Paul Tek, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
bss[n_]:=Module[{idn2=IntegerDigits[n,2]},FromDigits[Flatten[idn2/.{1-> idn2}],2]]; Array[bss,40,0] (* Harvey P. Dale, Aug 15 2017 *)
-
Python
def a(n): b = bin(n)[2:]; return int(b.replace("1", b), 2) print([a(n) for n in range(40)]) # Michael S. Branicky, Aug 05 2022
Formula
a(0) = 0. a(2^n) = 4^n. a(4n+2) = (4n+2)*(1+a(4n+1)/(4n+1)).
a(n) =z(n, n) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*A062383(v)+v. - Reinhard Zumkeller, Feb 15 2004
Extensions
Name clarified by Michael S. Branicky, Aug 05 2022