A065176 Site swap sequence associated with the permutation A065174 of Z.
0, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 16, 16, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 32, 32, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 16, 16, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 64, 64, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 16, 16, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 32, 32, 2, 2
Offset: 1
Links
- Georg Fischer, Table of n, a(n) for n = 1..16384
- Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, Vol. 101, No. 6 (1994), 507-519.
Programs
-
Maple
[seq(TZ2(abs(N2Z(n))), n=1..120)]; # using TZ2 from A065174 N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0); # Alternative: A065176 := n -> `if`(n = 1, 0, 2^padic:-ordp(n - 1 + irem(n-1, 2), 2)): seq(A065176(n), n = 1..99); # Peter Luschny, Nov 14 2021
-
Mathematica
a[n_] := 2^IntegerExponent[n - Mod[n, 2], 2]; a[1] = 0; Array[a, 100] (* Amiram Eldar, May 22 2025 *)
-
PARI
a(n) = if(n==1,0, 1<
Kevin Ryde, Jul 09 2021 -
Python
def A065176(n): s, h = 1, n // 2 if 0 == h: return 0 while 0 == h % 2: h //= 2 s += s return s + s print([A065176(n) for n in range(1, 100)]) # Peter Luschny, Nov 14 2021
Formula
G.f.: (1-x+x^2)/(1-x) + (1+x)*Sum(k>=1, 2^(k-1)*x^2^k/(1-x^2^k)). - Ralf Stephan, Apr 17 2003
a(n) = A171977(floor(n/2)) for n >= 2. - Georg Fischer, Nov 28 2022
Comments