cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065199 Record high values in A033665, ignoring those numbers that are believed never to reach a palindrome.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 24, 30, 53, 54, 55, 58, 64, 78, 79, 80, 82, 96, 97, 98, 109, 112, 113, 131, 135, 147, 149, 186, 187, 188, 198, 201, 232, 233, 236, 259, 260, 261
Offset: 1

Views

Author

Klaus Brockhaus, Oct 20 2001

Keywords

Comments

Records for the number of 'Reverse and Add' steps needed to reach a palindrome.
A065198 gives the corresponding starting points.

Examples

			Starting with 89, 24 'Reverse and Add' steps are needed to reach a palindrome; starting with n < 89, at most 6 steps are needed.
For n = A065198(21) = 1005499526, a(21) = 109 "reverse and add" operations are needed to reach a palindrome; for all smaller n, at most 98 steps are needed.
For n = A065198(31) ~ 10^14, a(31) = 198 "reverse and add" operations are needed to reach a palindrome; for all smaller n, at most 188 steps are needed.
For n = A065198(36) ~ 10^18, a(36) = 259 "reverse and add" operations are needed to reach a palindrome; for all smaller n, at most 236 steps are needed.
		

Crossrefs

Programs

  • Mathematica
    limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
    best = -1; lst = {};
    For[n = 0, n <= 100000, n++,
    np = n; i = 0;
    While[np != IntegerReverse[np] && i < limit,
      np = np + IntegerReverse[np]; i++];
    If[i < limit && i > best, best = i; AppendTo[lst, i]]]; lst (* Robert Price, Oct 14 2019 *)
  • PARI
    my(m, M=-1); for(n=0, oo, (MA033665(n, M+39))&&print1(M=m", ")) \\ For illustration; becomes very slow for terms > 70, even with the "custom" search limit as optional 2nd arg to A033665. - M. F. Hasler, Feb 16 2020

Formula

a(n) = A033665(A065198(n)). - M. F. Hasler, Feb 16 2020

Extensions

Terms a(17) to a(21) from Sascha Kurz, Dec 05 2001
Terms a(22) onwards were taken from Jason Doucette, World records. - Klaus Brockhaus, Sep 24 2003
Terms a(36) to a(38) were taken from Jason Doucette, World records and added by A.H.M. Smeets, Feb 10 2019
Edited by N. J. A. Sloane, Jul 16 2021