A065297 a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) properly contained in the digits of a(n+1)^2, with a(0)=1.
1, 4, 13, 36, 113, 487, 1036, 3214, 10456, 36786, 100963, 319656, 1001964, 3165969, 10001786, 31626854, 100013919, 316256807, 1000029656, 3162322481, 10000115537
Offset: 0
Examples
13^2 = 169 and 36 is the next smallest number whose square (in this case 1296) properly contains the digits 1,6,9.
Programs
-
Haskell
import Data.List ((\\), sort) a065297 n = a065297_list !! n a065297_list = 1 : f 1 (drop 2 a000290_list) where f x (q:qs) | null (xs \\ sq) && sort xs /= sort sq = y : f y qs | otherwise = f x qs where y = a000196 q; sq = show q; xs = show (x * x) -- Reinhard Zumkeller, Nov 22 2012
Extensions
More terms from Marc Paulhus, Jan 29 2002
More terms from David W. Wilson and Marc Paulhus, Feb 05 2002
a(19)-a(20) from Sean A. Irvine, Aug 26 2023
Comments