A065300 Numbers k such that the sum of divisors of k is a squarefree number.
1, 2, 4, 5, 8, 9, 13, 16, 18, 20, 25, 26, 29, 36, 37, 41, 45, 49, 50, 61, 64, 72, 73, 74, 80, 100, 101, 104, 109, 113, 116, 117, 121, 122, 128, 137, 144, 146, 148, 157, 169, 173, 180, 181, 193, 196, 200, 208, 218, 225, 229, 234, 242, 244, 256, 257, 261, 277, 281
Offset: 1
Keywords
Examples
For k = 100, sigma(100) = 217 = 7*31.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Programs
-
Mathematica
Select[Range@ 300, SquareFreeQ@ DivisorSigma[1, #] &] (* or *) Select[Range@ 300, Abs@ MoebiusMu@ DivisorSigma[1, #] == 1 &] (* Michael De Vlieger, Mar 18 2017 *)
-
PARI
{ n=0; for (m = 1, 10^9, if (abs(moebius(sigma(m)))==1, write("b065300.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 15 2009
-
PARI
for(n=1, 300, if(issquarefree(sigma(n)), print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
-
Python
from sympy import mobius, divisor_sigma from sympy.ntheory.factor_ import core [n for n in range(1,301) if abs(mobius(divisor_sigma(n, 1))) == 1] #* or *# [n for n in range(1,301) if core(divisor_sigma(n,1)) == divisor_sigma(n,1)] # Indranil Ghosh, Mar 19 2017
Formula
Solutions to |mu(sigma(x))| = 1.
Comments