cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065300 Numbers k such that the sum of divisors of k is a squarefree number.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 13, 16, 18, 20, 25, 26, 29, 36, 37, 41, 45, 49, 50, 61, 64, 72, 73, 74, 80, 100, 101, 104, 109, 113, 116, 117, 121, 122, 128, 137, 144, 146, 148, 157, 169, 173, 180, 181, 193, 196, 200, 208, 218, 225, 229, 234, 242, 244, 256, 257, 261, 277, 281
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

Numbers k such that sigma(k) divides primorial(k), that is, A002110(k) mod A000203(k) = 0. - Gary Detlefs, May 02 2012

Examples

			For k = 100, sigma(100) = 217 = 7*31.
		

Crossrefs

Cf. A000203 (sigma), A002110, A005117, A008683 (mu), A065299.

Programs

  • Mathematica
    Select[Range@ 300, SquareFreeQ@ DivisorSigma[1, #] &] (* or *)
    Select[Range@ 300, Abs@ MoebiusMu@ DivisorSigma[1, #] == 1 &] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    { n=0; for (m = 1, 10^9, if (abs(moebius(sigma(m)))==1, write("b065300.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 15 2009
    
  • PARI
    for(n=1, 300, if(issquarefree(sigma(n)), print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import mobius, divisor_sigma
    from sympy.ntheory.factor_ import core
    [n for n in range(1,301) if abs(mobius(divisor_sigma(n, 1))) == 1] #* or *#
    [n for n in range(1,301) if core(divisor_sigma(n,1)) == divisor_sigma(n,1)] # Indranil Ghosh, Mar 19 2017

Formula

Solutions to |mu(sigma(x))| = 1.