A065301 Numbers k such that both k and the sum of its divisors are squarefree numbers.
1, 2, 5, 13, 26, 29, 37, 41, 61, 73, 74, 101, 109, 113, 122, 137, 146, 157, 173, 181, 193, 218, 229, 257, 277, 281, 313, 314, 317, 353, 362, 373, 386, 389, 397, 401, 409, 421, 433, 457, 458, 461, 509, 541, 554, 569, 601, 613, 617, 626, 641, 653, 661, 673, 677
Offset: 1
Keywords
Examples
For k = 13, sigma(13) = 14 = 2*7 is squarefree. For k = 26, sigma(26) = 1 + 2 + 13 + 26 = 42 = 2*3*7 is squarefree. For k = 277 (prime), sigma(277) = 278 = 2*139 is squarefree.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Crossrefs
Programs
-
Mathematica
Select[Range[1000],AllTrue[{#,DivisorSigma[1,#]},SquareFreeQ]&] (* Harvey P. Dale, Aug 09 2014 *)
-
PARI
is(m) = abs(moebius(m))==1 && abs(moebius(sigma(m)))==1 \\ Harry J. Smith, Oct 15 2009
-
Python
from sympy import divisor_sigma from sympy.ntheory.factor_ import core def issquarefree(n): return core(n)==n print([n for n in range(1, 1001) if issquarefree(n) and issquarefree(divisor_sigma(n,1))]) # Indranil Ghosh, Mar 19 2017
Comments