cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065361 Rebase n from 3 to 2. Replace 3^k with 2^k in ternary expansion of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 5, 6, 4, 5, 6, 6, 7, 8, 8, 9, 10, 8, 9, 10, 10, 11, 12, 12, 13, 14, 8, 9, 10, 10, 11, 12, 12, 13, 14, 12, 13, 14, 14, 15, 16, 16, 17, 18, 16, 17, 18, 18, 19, 20, 20, 21, 22, 16, 17, 18, 18, 19, 20, 20, 21, 22, 20, 21, 22, 22, 23, 24, 24, 25, 26, 24, 25, 26, 26, 27
Offset: 0

Views

Author

Marc LeBrun, Oct 31 2001

Keywords

Comments

Notation: (3)[n](2).
Fixed point of the morphism 0->0,1,2; 1->2,3,4; 2->4,5,6; ...; n->2n,2n+1,2n+2. - Philippe Deléham, Oct 22 2011

Examples

			15 = 120 -> 1(4)+2(2)+0(1) = 8 = a(15).
		

Crossrefs

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 3)
            r += b * q
            b *= 2
        end
    r end; [a(n) for n in 0:76] |> println # Peter Luschny, Jan 03 2021
  • Mathematica
    t = Table[FromDigits[RealDigits[n, 3], 2], {n, 0, 100}]
    (* Clark Kimberling, Aug 02 2012 *)
  • PARI
    a(n)=if(n<1,0,if(n%3,a(n-1)+1,2*a(n/3)))
    
  • PARI
    a(n)=if(n<1,0,2*a(floor(n/3))+n-3*floor(n/3))
    
  • PARI
    Rebase(x, b, c)= { local(d, e=0, f=1); while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=c); return(e) } { for (n=0, 1000, write("b065361.txt", n, " ", Rebase(n, 3, 2)) ) } \\ Harry J. Smith, Oct 17 2009
    

Formula

a(0)=0, a(3n)=2*a(n), a(3n+1)=2*a(n)+1, a(3n+2)=2*a(n)+2. - Benoit Cloitre, Dec 21 2002
a(n) = 2*a(floor(n/3))+n-3*floor(n/3). - Benoit Cloitre, Apr 27 2003
a(n) = Sum_{k>=0} A030341(n,k)*2^k. - Philippe Deléham, Oct 22 2011