A065381 Primes not of the form p + 2^k, p prime and k >= 0.
2, 127, 149, 251, 331, 337, 373, 509, 599, 701, 757, 809, 877, 907, 977, 997, 1019, 1087, 1259, 1549, 1597, 1619, 1657, 1759, 1777, 1783, 1867, 1973, 2203, 2213, 2293, 2377, 2503, 2579, 2683, 2789, 2843, 2879, 2909, 2999, 3119, 3163, 3181, 3187, 3299
Offset: 1
Keywords
Examples
127 is a prime, 127-2^0 through 127-2^6 are all nonprimes.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- P. Pollack, Not Always Buried Deep: Selections from Analytic and Combinatorial Number Theory, p. 193, ex. 5.1.6, p. 216ff. [?Broken link]
- P. Pollack, Not Always Buried Deep: Selections from Analytic and Combinatorial Number Theory, p. 193, ex. 5.1.6, p. 216ff.
- Lei Zhou, Between 2^n and primes.
Crossrefs
Programs
-
Haskell
a065381 n = a065381_list !! (n-1) a065381_list = filter f a000040_list where f p = all ((== 0) . a010051 . (p -)) $ takeWhile (<= p) a000079_list -- Reinhard Zumkeller, Nov 24 2011
-
Mathematica
fQ[n_] := Block[{k = Floor[Log[2, n]], p = n}, While[k > -1 && ! PrimeQ[p - 2^k], k--]; If[k > 0, True, False]]; Drop[Select[Prime[Range[536]], ! fQ[#] &], {2}] (* Robert G. Wilson v, Feb 10 2005; corrected by Arkadiusz Wesolowski, May 05 2012 *)
-
PARI
is(p)=my(k=1);while(k
p,return(isprime(p)));0 \\ Charles R Greathouse IV, Jul 20 2014
Formula
Extensions
Link and cross-reference fixed by Charles R Greathouse IV, Nov 09 2008
Comments